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O café arabica (Coffea Arabica) representa mais de 60% do café produzido mundialmente. E
reconhecido por sua complexidade aromatica e sabor adocicado, o que o define como uma das
marcas mais valorizadas do mercado. Nesse sentido, estudos que capturam mudancgas nos
precos dessa commodity sao de grande importancia. O produto em sua grande maioria é
negociado em sacas de 60kg e tem seus precos diarios atualizados pela bolsa de Nova York.
Em Minas Gerais existem alguns mercados que se baseilam no de Nova York e atuam
realizando a compra interna do produto, esses mercados em geral representam 0s que
compram dos pequenos produtores dos estado, dentre estes tem a coperativa regional de
cafeicultores localizada na cidade de Guaxupe.

O principal objetivo deste trabalho foi modelar a volatilidade condicional da séerie de precos do
café arabica, e ajustar um modelo para estimar as variacdes no preco deste produto utilizando
os dados disponibilizados pela coperativa cooxupe.

A serie temporal avaliada possui n = 348 observacoes, sendo que cada uma dessas observacoes
corresponde ao preco médio mensal de uma saca de café de 60 kg, tipo 6 bebida dura bica
corrida, preco medio avaliado ao final de cada més pela Cooxupé. Os dados referidos sao de
janeiro de 1995 até dezembro de 2023. A analise inicial ocorreu fazendo a série de log
retornos, que é definida por Morettin e Toloi (2006) da seguinte forma:

Definicao 1: Seja Pt o preco de um ativo em um instante t. Por conveniéncia sup0e-se que nao

sdo pagos dividendos no intervalo (t,t — 1), defini-se entdo o retorno simples como:
_ P —P,y _ AP,
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0 log retorno de um ativo ¢ entdo definido como sendo:

P
r, = log (Pt—tl) = log(1 + R,).

Em seguida verificou-se o0 ACF e PACF das series log retorno dos precos do café. O proximo
passo foi realizar o teste de Cox Stuart para verificar a existéncia de alguma tendéncia na serie
log de retornos. O periodograma tambéem foi utilizado para verificar a existéncia de alguma
periodicidade na séerie, em conjunto o teste G de Fisher. Posteriormente, ajustou-se um modelo
AR(p) com uma componente cosseno para modelar a periodicidade encontrada e a
autocorrelacdo residual remanescente na serie.

Definicao 2: O processo autorregressivo de ordem p ou AR(p) e representado pelo modelo
Ye=u+ @Y g+ -+ @Y, + &, para todo ¢t = 1,...,n (MORETTIN E TOLOI, 2006).
Os valores Y;_4,...,Y;_, Sa0 0s p termos anteriores, a ¥; nos tempos ty, ..., t;_,, 0S termos
P1, -, Pp, representam os parametros reais, p simboliza uma media geral, & indica o erro
aleatério a qual se supde ser um ruido branco com média zero e variancia o4 independenpente
do tempo t ele é indicado por £,.~RB(0, a%). Na analise residual foram utiliazados os testes de
Shapiro Wilk para verificar a normalidade, o teste de Box-Pierce para verificar a existencia de
autocorrelacao e heterocedasticidade nos residuos, a estatistica do teste é definida por (LJUNG
e BOX, 1978) como segue:
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sendo 7; a autocorrelagao estimada da serie no lag j; n € a quantidade de observagoes e; m € 0

nimero de lags que estdo sendo testados. Com o intuito de modelar a volatilidade existente nos
residuos, ajustou-se um modelo autorregressivo de heteroscedasticidade condicional
generalizada, conhecido como modelo GARCH(r,s), (MORETTIN E TOLOI, 2006) o define
da seguinte forma:

Definicao 3:

Xy = \/h_tgt
he = ag + Xi_q aiXi; + Yi=1Bhe—j,

em que & 1.1.d. (0,1), ap >0, a; =20, 5, =0, Z?zl(a'i + ,Bj) <1, g = max(r,s). Devido a
sua simplicidade e eficiencia para capturar a volatilidade presente nos dados, o modelo
GARCH(1,1) é comumente utilizado no processo de modelagem da volatilidade de séries de
retorno, (Brooks e Burke 2003). O modelo pode entao ser expresso por:

he = ag + a1 XZ 1 + Brhe—1,

emquel0<aq, /1 <1, a1+ <1.
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Figura 1: Série historica de precos Figura 2: Série log retorno dos precos

O teste de Cox - Stuart indicou que nao existem indicios de tendéncia e rejeitou a hipotese
alternativa a 5% de probabilidade (valor de p de 49,52%). Por outro lado, o teste G de fisher
juntamente com o0 periodograma rejeitaram a hipotese de nulidade de que a periodicidade €
nao significativa a 5% de probabilidade, (valor p de 0,0853%) e indicaram a frequéncia angular
w = 0,52 (valor de p = 0,0853%), 0 que equivale a uma periodicidade de 12 meses. Para
modelar a volatilidade e contornar a periodicidade existente, ajustamos um modelo AR(1) com
uma componente cosseno.

O ajuste com a componente de cossenos foi escolhido no lugar de um componente seno pois o
primeiro teve a estimativa significativa, diferentemente do seno, que nao apresentou
significancia a 5% de probabilidade. Os valores das estimativas, significativas foram;
AR(l)(qu} = 0.2472), cos(7 = 0.0254). A figura 3 mostra que o quadrado do residuo

apresenta fortes indicios de autocorrelacdo, o teste de Box-Pierce confirma tal fato com um
(valor p de 0.1519%).
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Figura 3: Grafico da analise de residuos do modelo AR(1)

Para contornar essa situacdo e capturar a assimetria e a leptocurtose existente nas series de
retornos, ajustamos um modelo GARCH(1,1) juntamente com uma distribuicao skew t-
Student, para modelar a autocorrelacdo nos residuos. Outras distribuicbes também foram
testadas, a escolha do modelo se deu em funcao do maior valor para a funcao Log de
verossimilhanca. O modelo escolhido apresentou a estimativa para a funcdo de
verossimilhanca de [ = 442.5308, os parametros @, = 0,04523, £; = 0,9393, ¥ = 10, A =
1,159, (todos eles significativos a 5% de probabilidade). A especificacao final do modelo &
dada por:

Y, = 0.2472137 - Y,_, + 0.2774813 - Cos(0.52¢t) + X, ,

em que X, segue um modelo GARCH(1,1) do tipo X; = \/h.&;. No qual h, = 0.04523 -
X7 14+ 0.9393 - h,_;,com &~skew-t(10,1.159).
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Figura 4: Grafico da analise de residuos do modelo GARCH(1,1)

Para verficar a adequacdo do modelo foram aplicados os testes de Ljung-Box aos residuos
padronizados, Q(10) = 10.892(0.366), Q(15) = 17.174(0.308), Q(30) = 23.112(0.283), e aos
quadrados do residuo padronizado, Q(10) = 11.928(0.289), Q(15) = 16.854(0.327), Q(30) =
22.248(0.327). Os resultados indicam a ndo existéncia de autocorrelacdo nos residuos.

Constatou-se que os residuos do modelo GARCH(1,1) podem ser considerados ruidos branco
(p = 30,89%), alem disso a projecao intervalar realizada para a volatilidade condicional indicou
que o0s precos do café para os proximos 6 meses podem cair em até 12% ou subir em ate 14%,
aproximadamente.
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